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Product Service Systems (PSS)

* Products and Service bundles — Cross functional teams.
* Lifecycle perspective
» Transforming data into information for commercial production.
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Decision Support Systems

« Computer based tools that assist decision-makers in solving complex
problems.
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Need for New Approach

» Traditional methods may struggle with incomplete data and require strong
intuition from decision-makers.




Al-Driven Decision Support

Al can analyze complex data to identify patterns and predict future

outcomes.

Structuring complex data
ldentitying key relationships
Evaluating alternatives
Facilitating communication

Techniques
« Deep Learning
« Natural Language Processing
« Computer Vision
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Research Question

« How can Al-powered data analysis approaches augment decision-support in
early-stage PSS development by effectively addressing data complexity,
ambiguity, and uncertainty?




RESEARCH CASE

Working Approach
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PSS Transition
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Paper B&C

Heavy Construction Machine
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Paper D
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Solution
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Paper E

Improve PSS Development

How machines are being used
Predictive Maintenance

Better Planning and Reallocation
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Data Challenges
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Paper F

Original Image

Mapped Segmented Image
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Data Challenges
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Supporting Cause
and Effect Studies in
Product-Service
System Development

Artificial Neural Networks
Supporting
Cause-and-Effect Studies
in Product-Service System
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Al Driven Predictive
Maintenance for
Autonomous Vehicles
for Product-Service
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Construction Equipment
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Resulis

Combining data analysis with visualization system i.e., DSS
Associating data and information, aiding understanding and building of

knowledge

Increases the efficiency and effectiveness of the decision-making process
Cross-functional teams - augmenting the decision support

Data

Al MODEL

P e o o o o -

Complexity
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Actionable Data
(support for
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CONCLUSIONS

Research Key Takeways
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Conclusions

Addresses data challenges

Al-Driven Insights

Augments decision support

Al as powerful tool for PSS development

Future Works:
« Reinforcement Learning
« Expanding vision models
« Human-Al collaboration through vision models
« Digital Twins
« Evaluating the Impact of Al-powered support tools
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